

Starling Mission: ROMEO Experiment for Autonomous Swarm Control

Ted Hendriks

Outline

- Starling Mission Overview
 - Partners
 - Motivation
 - Swarm Overview
- ROMEO Overview
 - Objective
 - Setup
 - Challenges
- Future Work

Starling Summary

- Multi-CubeSat mission to demonstrate swarm technologies
 - 4 6U spacecraft
 - 550km Sun-Synchronous orbit
 - 26-week mission set to launch in mid-2022

Four onboard experiments

Starling Partners

Partners	Role
NASA Ames Research Center	Project Management Systems Engineering Payload Avionics & Software Propulsion System Spacecraft I&T Mission & Experiment Operations
Blue Canyon Technologies	Spacecraft Bus Spacecraft Operations
NASA Launch Services Program Launch Provider: Firefly Black Launch Integrator: Nanoracks	Launch
Stanford University	Relative Navigation Experiment
Emergent Space Technologies Inc.	Cluster Management Software
CesiumAstro Inc.	Crosslink Radios
L3 Harris	Flight Dynamics System Development

Starling Motivation

Starling is a tech demo to advance technologies in autonomous swarm control

- Swarms are becoming more popular
- Large swarms of spacecraft require more effort to maintain
- More effort to maintain means more people
- As swarms become more prevalent, technologies to control and maintain large swarms will need to be developed.

Onboard Experiments

Experiments	Partner	Approach
ROMEO - Onboard Cluster Flight Control	Emergent – Cluster Flight Application (CFA) Software	Implement CFA in Payload software and demonstrate automated cluster station-keeping
MANET - Crosslink/ Networking	CesiumAstro – CommPack S- band Crosslink Radio	Implement BATMAN networking protocol and demonstrate onboard network management
DSA - Distributed Spacecraft Autonomy	DSA Project out of NASA Game Changing Development (GCD) Program	Detect Total Electron Count (TEC) using bus L1/L2 GPS receiver, and have swarm autonomously change observation tactics
StarFOX - Relative Navigation	Stanford – Dr. Simone D'Amico for Relative Navigation algorithms	Use bus star tracker to image fellow swarm S/C over multiple orbits and run payload software to determine relative position

Swarm vs. Constellation

Swarm

- 2+ distributed spacecraft
- Relative navigation and control
- Inter-satellite distance magnitude is fraction of orbital distance

Constellation

- 2+ distributed spacecraft
- Inter-satellite distance magnitude is same as orbital distance

Hill Frame

- Relative motion modeled in the Hill frame (sometimes referred to as RIC, LVLH)
 - Note: tangential direction is not the same as the in-track direction for non-circular orbits, relative motion analysis frequently assumes circular orbits (e~0)

Radial direction lies along position vector to chief

Tangential direction completes the right-handed triad

Normal direction lies along the chief orbit normal

Relative Orbital Elements

- Starling formation designed using relative orbital elements (ROE) as articulated by D'Amico and Montenbruck
- ROE derived from inclination and eccentricity vectors
 - ϕ is the relative eccentricity phase angle (function of Δe and $\Delta \omega$)
 - θ is the argument latitude where the chief and deputy orbital planes intersect

$\{\delta a, \delta e_x, \delta e_y, \delta i_x, \delta i_y, \delta \lambda\}$

- First five ROE describe cyclical RT and RN plane motion
- δλ describes offset along the T axis

$$\overrightarrow{\delta e} = \begin{cases} \delta e_x \\ \delta e_y \end{cases} = \delta e \begin{cases} \cos \phi \\ \sin \phi \end{cases}$$

$$\vec{\delta i} = \begin{cases} \delta i_x \\ \delta i_y \end{cases} = \sin \delta i \begin{cases} \cos \theta \\ \sin \theta \end{cases}$$

Images courtesy of NASA Ames Research Center

Swarm Design

- Three different configurations throughout the mission
 - 4 Weeks of In-train
 - 7 Weeks of passive safety ellipses (PSE) configuration 1
 - 5 Weeks of PSE-2
- Minimum inter-satellite distance of 63 km
- Maximum inter-satellite distance of 200 km

Images courtesy of NASA Ames Research Center

ROMEO Overview

ROMEO (Reconfiguration and Orbit Maintenance Experiments Onboard) is an experimental software payload to demonstrate autonomous swarm maneuver planning and execution.

Objectives:

- Perform autonomous relative orbit maintenance with respect to a reference ephemeris
- Perform autonomous swarm maintenance with respect to a specified reference spacecraft
- Perform autonomous swarm reconfiguration to a new, specified formation

8/12/21 11

Autonomous Mission Operations

- Process for maintaining a swarm is the same regardless of what is performing the maintenance
- Ground utilizes the Flight Dynamics System
- ROMEO utilizes onboard software (Cluster Flight Application)

Cluster Flight Application

- Developed by Emergent Space technologies
- Modular autonomous control system that ROMEO utilizes
 - Calculates spacecraft position from onboard GPS measurements
 - Determines if maneuver is necessary
 - Computes optimal maneuvers through simulated annealing
 - Coordinates maneuver across all vehicles in the swarm

8/12/21 13

Experiment Approach

ROMEO includes multiple cycles to demonstrate increasing degrees of onboard autonomy.

- Shadow Mode
 - Demonstrate experiment configuration validity

performance nominal

- Activity Mode
 - Demonstrate experiment configuration performance

Experiment Phases

- Baseline plan for ROMEO includes 4 experiment configurations
 - May be executed multiple times and/or in different formation phases

Exp't	Formation	Mode	Crosslink	Passively Safe?
1	In-Train	Maintenance	No	No
2	PSE-1	Maintenance	No	Yes
3	PSE-1 or -2	Maintenance	Yes	Yes
4	PSE-2	Reconfiguration	Yes	Yes

Non-Crosslink Enabled Experiment

Images courtesy of NASA Ames Research Center

Crosslink Enabled Experiment

Images courtesy of NASA Ames Research Center

Evaluation Criteria

 Quantitative comparison between ground commanded maneuvers and autonomous formation maintenance

Performance	Metric	Data Source
Swarm Maintenance Efficiency	ΔV [cm/s]	Commanded maneuvers
Swarm Maintenance Accuracy	σ_{ROE} [n.d.]	Definitive ephemerides
Swarm Maintenance Complexity	n _{mnvrs} [n.d.]	Commanded maneuvers

Experiment Challenges

- Crosslink is necessary for full demonstration of autonomous capability
 - During earlier stages of the mission, Crosslink radios are not available
 - CFA can operate each vehicle independently of each other but requires knowledge of other vehicle positions
- Two autonomously operated swarms pose significant risk to each other
 - No cross-swarm communication
 - Mitigated by screening Starling maneuvers on the ground
 - Large impact on experiment ConOps
 - Impacts CFA performance

8/12/21 19

Experiment ConOps

- 1. Ground uploads CFA configuration prior to experiment window
- 2. CFA Generates a maneuver plan
 - 1+ hours
- 3. Plan is screened by ground for potential collisions
 - 7+ hours
- 4. 24-hour notification period for maneuvers to be distributed to relevant parties
 - Allows for abort command to be sent
- 5. Maneuvers executed
- 6. Ground performs orbit determination and evaluates maneuver performance

Future Work and Goals

- System to have distinct swarms communicate with each other needs to be developed
- As technology gains maturity need for ground validation is reduced
- Use demonstrated technologies on larger swarms

Questions?